# Copyright (c) 2017 The Verde Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
#
# This code is part of the Fatiando a Terra project (https://www.fatiando.org)
#
"""
Gridders that use scipy.interpolate as the backend.
"""
from abc import abstractmethod
from warnings import warn
import numpy as np
from scipy.interpolate import (
CloughTocher2DInterpolator,
LinearNDInterpolator,
NearestNDInterpolator,
)
from sklearn.utils.validation import check_is_fitted
from .base import BaseGridder, check_fit_input
from .coordinates import get_region
class _BaseScipyGridder(BaseGridder):
"""
A scipy.interpolate base gridder for scalar Cartesian data.
Used as a base class for each of the SciPy ND based interpolators.
Attributes
----------
interpolator_ : scipy interpolator class
An instance of the corresponding scipy interpolator class.
region_ : tuple
The boundaries (``[W, E, S, N]``) of the data used to fit the
interpolator. Used as the default region for the
:meth:`~verde.ScipyGridder.grid` and
:meth:`~verde.ScipyGridder.scatter` methods.
"""
@abstractmethod
def _get_interpolator(self):
"""
Return the SciPy interpolator class and any extra keyword arguments as
a dictionary.
"""
def fit(self, coordinates, data, weights=None):
"""
Fit the interpolator to the given data.
The data region is captured and used as default for the
:meth:`~verde._BaseScipyGridder.grid` method.
Parameters
----------
coordinates : tuple of arrays
Arrays with the coordinates of each data point. Should be in the
following order: (easting, northing, vertical, ...). Only easting
and northing will be used, all subsequent coordinates will be
ignored.
data : array
The data values that will be interpolated.
weights : None or array
Data weights are **not supported** by this interpolator and will be
ignored. Only present for compatibility with other gridder.
Returns
-------
self
Returns this gridder instance for chaining operations.
"""
if weights is not None:
warn(
"{} does not support weights and they will be ignored.".format(
self.__class__.__name__
)
)
coordinates, data, weights = check_fit_input(coordinates, data, weights)
easting, northing = coordinates[:2]
self.region_ = get_region((easting, northing))
points = np.column_stack((np.ravel(easting), np.ravel(northing)))
interpolator_class, kwargs = self._get_interpolator()
self.interpolator_ = interpolator_class(points, np.ravel(data), **kwargs)
return self
def predict(self, coordinates):
"""
Interpolate data on the given set of points.
Requires a fitted gridder (see :meth:`~verde._BaseScipyGridder.fit`).
Parameters
----------
coordinates : tuple of arrays
Arrays with the coordinates of each data point. Should be in the
following order: (easting, northing, vertical, ...). Only easting
and northing will be used, all subsequent coordinates will be
ignored.
Returns
-------
data : array
The data values interpolated on the given points.
"""
check_is_fitted(self, ["interpolator_"])
easting, northing = coordinates[:2]
return self.interpolator_((easting, northing))
[docs]
class Linear(_BaseScipyGridder):
"""
Piecewise linear interpolation.
Provides a Verde interface to
:class:`scipy.interpolate.LinearNDInterpolator`.
Parameters
----------
rescale : bool
If ``True``, rescale the data coordinates to [0, 1] range before
interpolation. Useful when coordinates vary greatly in scale. Default
is ``False``.
Attributes
----------
interpolator_ : scipy interpolator class
An instance of the corresponding scipy interpolator class.
region_ : tuple
The boundaries (``[W, E, S, N]``) of the data used to fit the
interpolator. Used as the default region for the
:meth:`~verde.Linear.grid` method.
"""
def __init__(self, rescale=False):
super().__init__()
self.rescale = rescale
def _get_interpolator(self):
"""
Return the SciPy interpolator class and any extra keyword arguments as
a dictionary.
"""
return LinearNDInterpolator, {"rescale": self.rescale}
[docs]
class Cubic(_BaseScipyGridder):
"""
Piecewise cubic interpolation.
Provides a Verde interface to
:class:`scipy.interpolate.CloughTocher2DInterpolator`.
Parameters
----------
rescale : bool
If ``True``, rescale the data coordinates to [0, 1] range before
interpolation. Useful when coordinates vary greatly in scale. Default
is ``False``.
Attributes
----------
interpolator_ : scipy interpolator class
An instance of the corresponding scipy interpolator class.
region_ : tuple
The boundaries (``[W, E, S, N]``) of the data used to fit the
interpolator. Used as the default region for the
:meth:`~verde.Cubic.grid` method.
"""
def __init__(self, rescale=False):
super().__init__()
self.rescale = rescale
def _get_interpolator(self):
"""
Return the SciPy interpolator class and any extra keyword arguments as
a dictionary.
"""
return CloughTocher2DInterpolator, {"rescale": self.rescale}
[docs]
class ScipyGridder(_BaseScipyGridder):
"""
A scipy.interpolate based gridder for scalar Cartesian data.
.. warning::
The ``ScipyGridder`` class is **deprecated** and will be **removed in
Verde v2.0.0**. Use :class:`~verde.KNeighbors`, :class:`~verde.Linear`,
and :class:`~verde.Cubic` instead.
Provides a verde gridder interface to the scipy interpolators
:class:`scipy.interpolate.LinearNDInterpolator`,
:class:`scipy.interpolate.NearestNDInterpolator`, and
:class:`scipy.interpolate.CloughTocher2DInterpolator` (cubic).
Parameters
----------
method : str
The interpolation method. Either ``'linear'``, ``'nearest'``, or
``'cubic'``.
extra_args : None or dict
Extra keyword arguments to pass to the scipy interpolator class. See
the documentation for each interpolator for a list of possible
arguments.
Attributes
----------
interpolator_ : scipy interpolator class
An instance of the corresponding scipy interpolator class.
region_ : tuple
The boundaries (``[W, E, S, N]``) of the data used to fit the
interpolator. Used as the default region for the
:meth:`~verde.ScipyGridder.grid` and
:meth:`~verde.ScipyGridder.scatter` methods.
"""
def __init__(self, method="cubic", extra_args=None):
super().__init__()
self.method = method
self.extra_args = extra_args
warn(
"verde.ScipyGridder is deprecated and will be removed in Verde "
"v2.0.0. Use the KNeighbors, Linear, and Cubic classes instead.",
FutureWarning,
)
def _get_interpolator(self):
"""
Return the SciPy interpolator class and any extra keyword arguments as
a dictionary.
"""
classes = dict(
linear=LinearNDInterpolator,
nearest=NearestNDInterpolator,
cubic=CloughTocher2DInterpolator,
)
if self.method not in classes:
raise ValueError(
"Invalid interpolation method '{}'. Must be one of {}.".format(
self.method, str(classes.keys())
)
)
if self.extra_args is None:
kwargs = {}
else:
kwargs = self.extra_args
return classes[self.method], kwargs