verde.maxabs

verde.maxabs#

verde.maxabs(*args, nan=True, percentile=100)[source]#

Calculate the maximum absolute value of the given array(s).

Use this to set the limits of your colorbars and center them on zero.

Parameters:
args

One or more arrays. If more than one are given, a single maximum will be calculated across all arrays.

nanbool, optional

If True, will use the nan version of numpy functions to ignore NaNs.

percentilefloat, optional

Instead of return the maximum absolute value, return a given percentile of the absolute values. Must be between 0 and 100. A value of 100 (default) will give the maximum absolute value, while a value of 50 will give the median of the absolute values.

Returns:
maxabsfloat

The maximum (or percentile) absolute value across all arrays.

Examples

>>> result = maxabs((1, -10, 25, 2, 3))
>>> float(result)
25.0
>>> result = maxabs(
...     (1, -10.5, 25, 2), (0.1, 100, -500), (-200, -300, -0.1, -499)
... )
>>> float(result)
500.0

If the array contains NaNs, we’ll use the nan version of of the numpy functions by default. You can turn this off through the nan argument.

>>> import numpy as np
>>> result = maxabs((1, -10, 25, 2, 3, np.nan))
>>> float(result)
25.0
>>> result = maxabs((1, -10, 25, 2, 3, np.nan), nan=False)
>>> float(result)
nan

If a more robust statistic is desired, you can use percentile to get the value at a given percentile instead of the maximum.

>>> result = maxabs((1, -10, 25, 2, 3), percentile=95)
>>> float(result)
21.99
>>> result = maxabs((1, -10, 25, 2, 3), percentile=100)
>>> float(result)
25.0

Examples using verde.maxabs#

Using weights in blocked reduction

Using weights in blocked reduction

Gridding with splines and weights

Gridding with splines and weights

Polynomial trend

Polynomial trend

Trends in vector data

Trends in vector data

Trend Estimation

Trend Estimation

Vector Data

Vector Data

Using Weights

Using Weights