Source code for choclo.point._kernels

# Copyright (c) 2022 The Choclo Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
#
# This code is part of the Fatiando a Terra project (https://www.fatiando.org)
#
"""
Kernel functions for point sources
"""
from numba import jit


[docs] @jit(nopython=True) def kernel_pot( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" The inverse of the distance between the two points .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_V(\mathbf{p}, \mathbf{q}) = \frac{ 1 }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return 1 / distance
[docs] @jit(nopython=True) def kernel_e( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Easting component of the gradient of the inverse of the distance .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_x(\mathbf{p}, \mathbf{q}) = \frac{\partial}{\partial x} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = - \frac{ x_p - x_q }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return -(easting_p - easting_q) / distance**3
[docs] @jit(nopython=True) def kernel_n( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Northing component of the gradient of the inverse of the distance .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_y(\mathbf{p}, \mathbf{q}) = \frac{\partial}{\partial y} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = - \frac{ y_p - y_q }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return -(northing_p - northing_q) / distance**3
[docs] @jit(nopython=True) def kernel_u( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Upward component of the gradient of the inverse of the distance .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_z(\mathbf{p}, \mathbf{q}) = \frac{\partial}{\partial z} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = - \frac{ z_p - z_q }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return -(upward_p - upward_q) / distance**3
[docs] @jit(nopython=True) def kernel_ee( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Second derivative of the inverse of the distance along easting-easting .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_{xx}(\mathbf{p}, \mathbf{q}) = \frac{\partial^2}{\partial x^2} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = \frac{ 3 (x_p - x_q)^2 }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^5 } - \frac{ 1 }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^3 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return 3 * (easting_p - easting_q) ** 2 / distance**5 - 1 / distance**3
[docs] @jit(nopython=True) def kernel_nn( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Second derivative of the inverse of the distance along northing-northing .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_{yy}(\mathbf{p}, \mathbf{q}) = \frac{\partial^2}{\partial y^2} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = \frac{ 3 (y_p - y_q)^2 }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^5 } - \frac{ 1 }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^3 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return 3 * (northing_p - northing_q) ** 2 / distance**5 - 1 / distance**3
[docs] @jit(nopython=True) def kernel_uu( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Second derivative of the inverse of the distance along upward-upward .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_{zz}(\mathbf{p}, \mathbf{q}) = \frac{\partial^2}{\partial z^2} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = \frac{ 3 (z_p - z_q)^2 }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^5 } - \frac{ 1 }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^3 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return 3 * (upward_p - upward_q) ** 2 / distance**5 - 1 / distance**3
[docs] @jit(nopython=True) def kernel_en( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Second derivative of the inverse of the distance along easting-northing .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_{xy}(\mathbf{p}, \mathbf{q}) = \frac{\partial}{\partial x \partial y} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = \frac{ 3 (x_p - x_q) (y_p - y_q) }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^5 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return 3 * (easting_p - easting_q) * (northing_p - northing_q) / distance**5
[docs] @jit(nopython=True) def kernel_eu( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Second derivative of the inverse of the distance along easting-upward .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_{xz}(\mathbf{p}, \mathbf{q}) = \frac{\partial}{\partial x \partial z} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = \frac{ 3 (x_p - x_q) (z_p - z_q) }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^5 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return 3 * (easting_p - easting_q) * (upward_p - upward_q) / distance**5
[docs] @jit(nopython=True) def kernel_nu( easting_p, northing_p, upward_p, easting_q, northing_q, upward_q, distance ): r""" Second derivative of the inverse of the distance along northing-upward .. important :: The coordinates of the two points must be in Cartesian coordinates and have the same units. Parameters ---------- easting_p, northing_p, upward_p : float Easting, northing and upward coordinates of point :math:`\mathbf{p}`. easting_q, northing_q, upward_q : float Easting, northing and upward coordinates of point :math:`\mathbf{q}`. distance : float Euclidean distance between points :math:`\mathbf{p}` and :math:`\mathbf{q}`. Returns ------- kernel : float Value of the kernel function. Notes ----- Given two points :math:`\mathbf{p} = (x_p, y_p, z_p)` and :math:`\mathbf{q} = (x_q, y_q, z_q)` defined in a Cartesian coordinate system, compute the following kernel function: .. math:: k_{yz}(\mathbf{p}, \mathbf{q}) = \frac{\partial}{\partial y \partial z} \left( \frac{1}{\lVert \mathbf{p} - \mathbf{q} \rVert_2} \right) = \frac{ 3 (y_p - y_q) (z_p - z_q) }{ \lVert \mathbf{p} - \mathbf{q} \rVert_2^5 } where :math:`\lVert \cdot \rVert_2` refer to the :math:`L_2` norm (the Euclidean distance between :math:`\mathbf{p}` and :math:`\mathbf{q}`). """ return 3 * (northing_p - northing_q) * (upward_p - upward_q) / distance**5