"""
Functions to load sample data
"""
import os
import numpy as np
import pandas as pd
import pooch
from ..version import full_version
POOCH = pooch.create(
path=["~", ".verde", "data"],
base_url="https://github.com/fatiando/verde/raw/{version}/data/",
version=full_version,
version_dev="master",
env="VERDE_DATA_DIR",
)
POOCH.load_registry(os.path.join(os.path.dirname(__file__), "registry.txt"))
def _setup_map(
ax, xticks, yticks, crs, region, land=None, ocean=None, borders=None, states=None
):
"""
Setup a Cartopy map with land and ocean features and proper tick labels.
"""
import cartopy.feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
if land is not None:
ax.add_feature(cfeature.LAND, facecolor=land)
if ocean is not None:
ax.add_feature(cfeature.OCEAN, facecolor=ocean)
if borders is not None:
ax.add_feature(cfeature.BORDERS, linewidth=borders)
if states is not None:
ax.add_feature(cfeature.STATES, linewidth=states)
ax.set_extent(region, crs=crs)
# Set the proper ticks for a Cartopy map
ax.set_xticks(xticks, crs=crs)
ax.set_yticks(yticks, crs=crs)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
[docs]def fetch_baja_bathymetry():
"""
Fetch sample bathymetry data from Baja California.
This is the ``@tut_ship.xyz`` sample data from the `GMT
<http://gmt.soest.hawaii.edu/>`__ tutorial.
If the file isn't already in your data directory, it will be downloaded
automatically.
Returns
-------
data : :class:`pandas.DataFrame`
The bathymetry data. Columns are longitude, latitude, and bathymetry
(in meters) for each data point.
See also
--------
setup_baja_bathymetry_map: Utility function to help setup a Cartopy map.
"""
data_file = POOCH.fetch("baja-bathymetry.csv.xz")
data = pd.read_csv(data_file, compression="xz")
return data
[docs]def setup_baja_bathymetry_map(
ax, region=(245.0, 254.705, 20.0, 29.99), land="gray", ocean=None
):
"""
Setup a Cartopy map for the Baja California bathymetry dataset.
Parameters
----------
ax : matplotlib Axes
The axes where the map is being plotted.
region : list = [W, E, S, N]
The boundaries of the map region in the coordinate system of the data.
land : str or None
The name of the color of the land feature or None to omit it.
ocean : str or None
The name of the color of the ocean feature or None to omit it.
See also
--------
fetch_baja_bathymetry: Sample bathymetry data from Baja California.
"""
import cartopy.crs as ccrs
_setup_map(
ax,
xticks=np.arange(-114, -105, 2),
yticks=np.arange(21, 30, 2),
land=land,
ocean=ocean,
region=region,
crs=ccrs.PlateCarree(),
)
[docs]def fetch_rio_magnetic():
"""
Fetch sample total-field magnetic anomaly data from Rio de Janeiro, Brazil.
These data were cropped from the northwestern part of an airborne survey of Rio de
Janeiro, Brazil, conducted in 1978. The data are made available by the Geological
Survey of Brazil (CPRM) through their `GEOSGB portal
<http://geosgb.cprm.gov.br/>`__.
The anomaly is calculated with respect to the IGRF field parameters listed on the
table below. See the original data for more processing information.
+----------+-----------+----------------+-------------+-------------+
| IGRF for year 1978.3 at 500 m height |
+----------+-----------+----------------+-------------+-------------+
| Latitude | Longitude | Intensity (nT) | Declination | Inclination |
+==========+===========+================+=============+=============+
| -22º15' | -42º15' | 23834 | -19º19' | -27º33' |
+----------+-----------+----------------+-------------+-------------+
If the file isn't already in your data directory, it will be downloaded
automatically.
Returns
-------
data : :class:`pandas.DataFrame`
The magnetic anomaly data. Columns are longitude, latitude, total-field
magnetic anomaly (nanoTesla), observation height above the WGS84 ellipsoid (in
meters), flight line type (LINE or TIE), and flight line number for each data
point.
See also
--------
setup_rio_magnetic_map: Utility function to help setup a Cartopy map.
"""
data_file = POOCH.fetch("rio-magnetic.csv.xz")
data = pd.read_csv(data_file, compression="xz")
return data
[docs]def setup_rio_magnetic_map(ax, region=(-42.6, -42, -22.5, -22)):
"""
Setup a Cartopy map for the Rio de Janeiro magnetic anomaly dataset.
Parameters
----------
ax : matplotlib Axes
The axes where the map is being plotted.
region : list = [W, E, S, N]
The boundaries of the map region in the coordinate system of the data.
land : str or None
The name of the color of the land feature or None to omit it.
ocean : str or None
The name of the color of the ocean feature or None to omit it.
See also
--------
fetch_rio_magnetic: Sample magnetic anomaly data from Rio de Janeiro, Brazil.
"""
import cartopy.crs as ccrs
_setup_map(
ax,
xticks=np.arange(-42.5, -42, 0.1),
yticks=np.arange(-22.5, -21.99, 0.1),
land=None,
ocean=None,
region=region,
crs=ccrs.PlateCarree(),
)
[docs]def fetch_california_gps():
"""
Fetch sample GPS velocity data from California (the U.S. West coast).
Velocities and their standard deviations are in meters/year. Height is geometric
height above WGS84 in meters. Velocities are referenced to the North American
tectonic plate (NAM08). The average velocities were released on 2017-12-27.
This material is based on EarthScope Plate Boundary Observatory data services
provided by UNAVCO through the GAGE Facility with support from the National Science
Foundation (NSF) and National Aeronautics and Space Administration (NASA) under NSF
Cooperative Agreement No. EAR-1261833.
If the file isn't already in your data directory, it will be downloaded
automatically.
Returns
-------
data : :class:`pandas.DataFrame`
The GPS velocity data. Columns are longitude, latitude, height
(geometric, in meters), East velocity (meter/year), North velocity
(meter/year), upward velocity (meter/year), standard deviation of East
velocity (meter/year), standard deviation of North velocity
(meter/year), standard deviation of upward velocity (meter/year).
See also
--------
setup_california_gps_map: Utility function to help setup a Cartopy map.
"""
data_file = POOCH.fetch("california-gps.csv.xz")
data = pd.read_csv(data_file, compression="xz")
return data
[docs]def setup_california_gps_map(
ax, region=(235.2, 245.3, 31.9, 42.3), land="gray", ocean="skyblue"
):
"""
Setup a Cartopy map for the California GPS velocity dataset.
Parameters
----------
ax : matplotlib Axes
The axes where the map is being plotted.
region : list = [W, E, S, N]
The boundaries of the map region in the coordinate system of the data.
land : str or None
The name of the color of the land feature or None to omit it.
ocean : str or None
The name of the color of the ocean feature or None to omit it.
See also
--------
fetch_california_gps: Sample GPS velocity data from California.
"""
import cartopy.crs as ccrs
_setup_map(
ax,
xticks=np.arange(-124, -115, 4),
yticks=np.arange(33, 42, 2),
land=land,
ocean=ocean,
region=region,
crs=ccrs.PlateCarree(),
)
[docs]def fetch_texas_wind():
"""
Fetch sample wind speed and air temperature data for the state of Texas, USA.
Data are average wind speed and air temperature for data for February 26 2018. The
original data was downloaded from `Iowa State University
<https://mesonet.agron.iastate.edu/request/download.phtml>`__.
If the file isn't already in your data directory, it will be downloaded
automatically.
Returns
-------
data : :class:`pandas.DataFrame`
Columns are the station ID, longitude, latitude, air temperature in C, east
component of wind speed in knots, and north component of wind speed in knots.
See also
--------
setup_texas_wind_map: Utility function to help setup a Cartopy map.
"""
data_file = POOCH.fetch("texas-wind.csv")
data = pd.read_csv(data_file)
return data
[docs]def setup_texas_wind_map(
ax, region=(-107, -93, 25.5, 37), land="#dddddd", borders=0.5, states=0.1
):
"""
Setup a Cartopy map for the Texas wind speed and air temperature dataset.
Parameters
----------
ax : matplotlib Axes
The axes where the map is being plotted.
region : list = [W, E, S, N]
The boundaries of the map region in the coordinate system of the data.
land : str or None
The name of the color of the land feature or None to omit it.
borders : float or None
Line width of the country borders.
states : float or None
Line width of the state borders.
See also
--------
fetch_texas_wind: Sample wind speed and air temperature data for Texas.
"""
import cartopy.crs as ccrs
_setup_map(
ax,
xticks=np.arange(-106, -92, 3),
yticks=np.arange(27, 38, 3),
land=land,
ocean=None,
region=region,
borders=borders,
states=states,
crs=ccrs.PlateCarree(),
)