bordado.random_coordinates_spherical#
- bordado.random_coordinates_spherical(region, size, *, random_seed=None, non_dimensional_coords=None)[source]#
Generate the coordinates for uniformly random points on the sphere.
Points drawn from a simple uniform distribution of longitude and latitude will tend to be more concentrated towards the poles. This function accounts for that and is able generate a uniformly random distribution on the surface of a sphere.
- Parameters:
- region
tuple
= (W
,E
,S
,N
) The boundaries of a given region in geographic coordinates. Should have a lower and an upper boundary for each dimension of the coordinate system.
- size
int
The number of points to generate.
- random_seed
None
orint
ornumpy.random.Generator
A seed for a random number generator (RNG) used to generate the coordinates. If an integer is given, it will be used as a seed for
numpy.random.default_rng
which will then be used as the generator. If anumpy.random.Generator
is given, it will be used. IfNone
is given,default_rng
will be used with no seed to create a generator (resulting in different numbers with each run). Use a seed to make sure computations are reproducible. Default is None.- non_dimensional_coords
None
, scalar,or
tuple
of
scalars
If not None, then value(s) of extra non-dimensional coordinates (coordinates that aren’t part of the sample dimensions, like height for a lat/lon grid). Will generate extra coordinate arrays from these values with the same shape of the final coordinates and the constant value given here. Use this to generate arrays of constant heights or times, for example, which might be needed to accompany a set of points.
- region
- Returns:
- coordinates
tuple
of
arrays
Arrays with the longitude, latitude, and non-dimensional coordinates, in order, of each point in the grid. Each array contains values for a dimension in an order compatible with region followed by any extra dimensions given in non_dimensional_coords. All arrays will have the specified size.
- coordinates
Examples
We can generate the random coordinates on a sphere like so:
>>> coordinates = random_coordinates_spherical( ... region=(-100, 100, -80, -20), size=10, random_seed=42, ... )
We set a seed here to make sure our examples always return the same values. If you need different values every time you run your code, then either omit
random_seed
or set it toNone
.>>> import numpy as np
The first coordinate is the longitude:
>>> print(np.array_str(coordinates[0], precision=1)) [ 54.8 -12.2 71.7 39.5 -81.2 95.1 52.2 57.2 -74.4 -9.9]
And the second is the latitude:
>>> print(np.array_str(coordinates[1], precision=1)) [-48.3 -22.9 -34.8 -27.1 -44.4 -57. -38.9 -70.7 -26.9 -35.4]
To show how this differs from
bordado.random_coordinates
, we can generate a large number of points and calculate the point density per latitude band. We expect the concentration to be uniform since we want uniformly distributed numbers.First, we’ll define a function that calculates the point density per 10 degree band of latitude:
>>> import bordado as bd >>> def point_density(coordinates, region): ... # Define the latitude bands ... bands = bd.line_coordinates(*region[2:], spacing=10) ... # Calculate the area of each band. ... # See https://en.wikipedia.org/wiki/Spherical_cap ... areas = 2 * np.pi * abs( ... np.sin(np.radians(bands[:-1])) - np.sin(np.radians(bands[1:])) ... ) ... # Figure out how many points are in each band ... points_per_band = np.array([ ... bd.inside( ... coordinates, ... [*region[:2], bands[i], bands[i + 1]], ... ).sum() ... for i in range(bands.size - 1) ... ]) ... # Calculate the density ... density = points_per_band / areas ... return density
Now we can make a lot of random points using this function and the traditional
bordado.random_coordinates
to compare:>>> region = (0, 360, -90, 90) >>> size = 100_000 >>> coordinates_cartesian = random_coordinates( ... region, size, random_seed=42, ... ) >>> coordinates_spherical = random_coordinates_spherical( ... region, size, random_seed=42, ... )
Finally, we calculate and print the point density per latitude for each set:
>>> density_cartesian = point_density(coordinates_cartesian, region) >>> print(np.array_str(density_cartesian, precision=0)) [57147. 19812. 12159. 8981. 7267. 6107. 5574. 5320. 5151. 5033. 5237. 5558. 6138. 7075. 8800. 11967. 19660. 58635.]
>>> density_spherical = point_density(coordinates_spherical, region) >>> print(np.array_str(density_spherical, precision=0)) [8192. 7786. 7683. 8134. 8113. 8112. 7867. 7982. 8029. 7945. 7834. 7901. 7931. 7902. 7924. 8037. 7987. 8119.]
As you can see, for the Cartesian version the density increases towards the poles but for the spherical version it stays roughly the same throughout the globe.