Source code for harmonica.equivalent_sources.spherical

# Copyright (c) 2018 The Harmonica Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
#
# This code is part of the Fatiando a Terra project (https://www.fatiando.org)
#
"""
Equivalent sources for generic harmonic functions in spherical coordinates
"""
import warnings

import numpy as np
import verde as vd
import verde.base as vdb
from numba import jit
from sklearn.utils.validation import check_is_fitted

from ..forward.utils import distance_spherical
from .utils import (
    jacobian_numba_parallel,
    jacobian_numba_serial,
    pop_extra_coords,
    predict_numba_parallel,
    predict_numba_serial,
)


[docs]class EquivalentSourcesSph(vdb.BaseGridder): r""" Equivalent sources for generic harmonic functions in spherical coordinates These equivalent sources can be used for: * Spherical coordinates (geographic coordinates must be converted before use) * Regional or global data where Earth's curvature must be taken into account * Gravity and magnetic data (including derivatives) * Single data types * Interpolation * Upward continuation * Finite-difference based derivative calculations They cannot be used for: * Joint inversion of multiple data types (e.g., gravity + gravity gradients) * Reduction to the pole of magnetic total field anomaly data * Analytical derivative calculations Point sources are located beneath the observed potential-field measurement points by default [Cooper2000]_. Custom source locations can be used by specifying the *points* argument. Coefficients associated with each point source are estimated through linear least-squares with damping (Tikhonov 0th order) regularization. The Green's function for point mass effects used is the inverse Euclidean distance between the grid coordinates and the point source: .. math:: \phi(\bar{x}, \bar{x}') = \frac{1}{||\bar{x} - \bar{x}'||} where :math:`\bar{x}` and :math:`\bar{x}'` are the coordinate vectors of the observation point and the source, respectively. Parameters ---------- damping : None or float The positive damping regularization parameter. Controls how much smoothness is imposed on the estimated coefficients. If None, no regularization is used. points : None or list of arrays (optional) List containing the coordinates of the equivalent point sources. Coordinates are assumed to be in the following order: (``longitude``, ``latitude``, ``radius``). Both ``longitude`` and ``latitude`` must be in degrees and ``radius`` in meters. If None, will place one point source below each observation point at a fixed relative depth below the observation point [Cooper2000]_. Defaults to None. relative_depth : float Relative depth at which the point sources are placed beneath the observation points. Each source point will be set beneath each data point at a depth calculated as the radius of the data point minus this constant *relative_depth*. Use positive numbers (negative numbers would mean point sources are above the data points). Ignored if *points* is specified. parallel : bool If True any predictions and Jacobian building is carried out in parallel through Numba's ``jit.prange``, reducing the computation time. If False, these tasks will be run on a single CPU. Default to True. Attributes ---------- points_ : 2d-array Coordinates of the equivalent point sources. coefs_ : array Estimated coefficients of every point source. region_ : tuple The boundaries (``[W, E, S, N]``) of the data used to fit the interpolator. Used as the default region for the :meth:`~harmonica.EquivalentSources.grid` method. """ # Set the default dimension names for generated outputs # as xr.Dataset. dims = ("spherical_latitude", "longitude") # Overwrite the defalt name for the upward coordinate. extra_coords_name = "radius" # Define dispatcher for Numba functions with or without parallelization _predict_kernel = {False: predict_numba_serial, True: predict_numba_parallel} _jacobian_kernel = {False: jacobian_numba_serial, True: jacobian_numba_parallel} def __init__( self, damping=None, points=None, relative_depth=500, parallel=True, ): self.damping = damping self.points = points self.relative_depth = relative_depth self.parallel = parallel # Define Green's function for spherical coordinates self.greens_function = greens_func_spherical
[docs] def fit(self, coordinates, data, weights=None): """ Fit the coefficients of the equivalent sources. The data region is captured and used as default for the :meth:`~harmonica.EquivalentSourcesSph.grid` method. All input arrays must have the same shape. Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (``longitude``, ``latitude``, ``radius``, ...). Only ``longitude``, ``latitude``, and ``radius`` will be used, all subsequent coordinates will be ignored. data : array The data values of each data point. weights : None or array If not None, then the weights assigned to each data point. Typically, this should be 1 over the data uncertainty squared. Returns ------- self Returns this estimator instance for chaining operations. """ coordinates, data, weights = vdb.check_fit_input(coordinates, data, weights) # Capture the data region to use as a default when gridding. self.region_ = vd.get_region(coordinates[:2]) coordinates = vdb.n_1d_arrays(coordinates, 3) if self.points is None: self.points_ = ( coordinates[0], coordinates[1], coordinates[2] - self.relative_depth, ) else: self.points_ = vdb.n_1d_arrays(self.points, 3) jacobian = self.jacobian(coordinates, self.points_) self.coefs_ = vdb.least_squares(jacobian, data, weights, self.damping) return self
[docs] def predict(self, coordinates): """ Evaluate the estimated equivalent sources on the given set of points. Requires a fitted estimator (see :meth:`~harmonica.EquivalentSourcesSph.fit`). Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (``longitude``, ``latitude``, ``radius``, ...). Only ``longitude``, ``latitude`` and ``radius`` will be used, all subsequent coordinates will be ignored. Returns ------- data : array The data values evaluated on the given points. """ # We know the gridder has been fitted if it has the coefs_ check_is_fitted(self, ["coefs_"]) shape = np.broadcast(*coordinates[:3]).shape size = np.broadcast(*coordinates[:3]).size dtype = coordinates[0].dtype coordinates = tuple(np.atleast_1d(i).ravel() for i in coordinates[:3]) data = np.zeros(size, dtype=dtype) self._predict_kernel[self.parallel]( coordinates, self.points_, self.coefs_, data, self.greens_function ) return data.reshape(shape)
[docs] def jacobian(self, coordinates, points, dtype="float64"): """ Make the Jacobian matrix for the equivalent sources. Each column of the Jacobian is the Green's function for a single point source evaluated on all observation points. Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (``longitude``, ``latitude``, ``radius``, ...). Only ``longitude``, ``latitude`` and ``radius`` will be used, all subsequent coordinates will be ignored. points : tuple of arrays Tuple of arrays containing the coordinates of the equivalent point sources in the following order: (``longitude``, ``latitude``, ``radius``). dtype : str or numpy dtype The type of the Jacobian array. Returns ------- jacobian : 2D array The (n_data, n_points) Jacobian matrix. """ # Compute Jacobian matrix n_data = coordinates[0].size n_points = points[0].size jac = np.zeros((n_data, n_points), dtype=dtype) self._jacobian_kernel[self.parallel]( coordinates, points, jac, self.greens_function ) return jac
[docs] def grid( self, upward, region=None, shape=None, spacing=None, dims=None, data_names=None, **kwargs, ): """ Interpolate the data onto a regular grid. The grid can be specified by either the number of points in each dimension (the *shape*) or by the grid node spacing. See :func:`verde.grid_coordinates` for details. All grid points will be located at the same `upward` coordinate. Other arguments for :func:`verde.grid_coordinates` can be passed as extra keyword arguments (``kwargs``) to this method. If the interpolator collected the input data region, then it will be used if ``region=None``. Otherwise, you must specify the grid region. Use the *dims* and *data_names* arguments to set custom names for the dimensions and the data field(s) in the output :class:`xarray.Dataset`. Default names will be provided if none are given. Parameters ---------- upward : float Upward coordinate of the grid points. region : list = [W, E, S, N] The west, east, south, and north boundaries of a given region. shape : tuple = (n_north, n_east) or None The number of points in the South-North and West-East directions, respectively. spacing : tuple = (s_north, s_east) or None The grid spacing in the South-North and West-East directions, respectively. dims : list or None The names of the northing and easting data dimensions, respectively, in the output grid. Default is determined from the ``dims`` attribute of the class. Must be defined in the following order: northing dimension, easting dimension. **NOTE: This is an exception to the "easting" then "northing" pattern but is required for compatibility with xarray.** data_names : list of None The name(s) of the data variables in the output grid. Defaults to ``['scalars']``. Returns ------- grid : xarray.Dataset The interpolated grid. Metadata about the interpolator is written to the ``attrs`` attribute. """ # We override the grid method from BaseGridder so it takes the upward # coordinate as a positional argument. # Ignore extra_coords if passed pop_extra_coords(kwargs) # Grid data # We always pass projection=None because that argument it's intended to # be used only with Cartesian gridders. grid = super().grid( region=region, shape=shape, spacing=spacing, dims=dims, data_names=data_names, projection=None, extra_coords=upward, **kwargs, ) return grid
[docs] def scatter( self, region=None, # noqa: U100 size=None, # noqa: U100 random_state=None, # noqa: U100 dims=None, # noqa: U100 data_names=None, # noqa: U100 projection=None, # noqa: U100 **kwargs, # noqa: U100 ): """ .. warning :: Not implemented method. The scatter method will be deprecated on Verde v2.0.0. """ raise NotImplementedError
[docs] def profile( self, point1, # noqa: U100 point2, # noqa: U100 size, # noqa: U100 dims=None, # noqa: U100 data_names=None, # noqa: U100 projection=None, # noqa: U100 **kwargs, # noqa: U100 ): """ .. warning :: Not implemented method. The profile on spherical coordinates should be done using great-circle distances through the Haversine formula. """ raise NotImplementedError
class EQLHarmonicSpherical(EquivalentSourcesSph): """ DEPRECATED, use ``harmonica.EquivalentSourcesSph`` instead. This class exists to support backward compatibility until next release. """ def __init__( self, damping=None, points=None, relative_depth=500, parallel=True, ): warnings.warn( "The 'EQLHarmonic' class has been renamed to 'EquivalentSources' " + "and will be removed on the next release, " + "please use 'EquivalentSources' instead.", FutureWarning, ) super().__init__( damping=damping, points=points, relative_depth=relative_depth, parallel=parallel, ) @jit(nopython=True) def greens_func_spherical( longitude, latitude, radius, point_longitude, point_latitude, point_radius ): """ Green's function for the equivalent sources in spherical coordinates Uses Numba to speed up things. """ distance = distance_spherical( (longitude, latitude, radius), (point_longitude, point_latitude, point_radius) ) return 1 / distance