Available ellipsoids#

These are the available ellipsoids and their corresponding defining parameters.

All ellipsoids are instances of the Ellipsoid, Sphere, or TriaxialEllipsoid classes. See the class documentations for a list their derived physical properties (attributes) and computations/transformations that they can perform (methods).

Help!

If an ellipsoid you need isn’t in Boule yet, please reach out to the team and consider adding it yourself. It requires no special knowledge of the code and is a great way to help the project!

Earth#

The WGS84 (World Geodetic System 1984) ellipsoid as defined by the values given in [HofmannWellenhofMoritz2006]:

print(boule.WGS84)
Ellipsoid(name='WGS84', semimajor_axis=6378137, flattening=0.0033528106647474805, geocentric_grav_const=398600441800000.0, angular_velocity=7.292115e-05, long_name='World Geodetic System 1984', reference='Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy (2nd, corr. ed. 2006 edition ed.). Wien\u202f; New York: Springer.')

The GRS80 (Geodetic Reference System 1980) ellipsoid as defined by the values given in [HofmannWellenhofMoritz2006]:

print(boule.GRS80)
Ellipsoid(name='GRS80', semimajor_axis=6378137, flattening=0.003352810681182319, geocentric_grav_const=398600500000000.0, angular_velocity=7.292115e-05, long_name='Geodetic Reference System 1980', reference='Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy (2nd, corr. ed. 2006 edition ed.). Wien\u202f; New York: Springer.')

Moon#

The parameters of the Lunar spheroid were obtained from [Wieczorek2015]:

print(boule.MOON)
Sphere(name='MOON', radius=1737151, geocentric_grav_const=4902800070000.0, angular_velocity=2.6617073e-06, long_name='Moon Spheroid', reference='Wieczorek, MA (2015). 10.05 - Gravity and Topography of the Terrestrial Planets, Treatise of Geophysics (Second Edition); Elsevier. doi:10.1016/B978-0-444-53802-4.00169-X')

Mars#

The parameters of the Martian ellipsoid were obtained from [Ardalan2009]:

print(boule.MARS)
Ellipsoid(name='MARS', semimajor_axis=3395428, flattening=0.005227617843759314, geocentric_grav_const=42828372000000.0, angular_velocity=7.0882181e-05, long_name='Mars Ellipsoid', reference='Ardalan, A. A., Karimi, R., & Grafarend, E. W. (2009). A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars. Earth, Moon, and Planets, 106(1), 1. doi:10.1007/s11038-009-9342-7')

Mercury#

The parameters of the Mercurian spheroid were obtained from [Wieczorek2015]:

print(boule.MERCURY)
Sphere(name='MERCURY', radius=2439372, geocentric_grav_const=22031839221000.0, angular_velocity=1.2400172589e-06, long_name='Mercury Spheroid', reference='Wieczorek, MA (2015). 10.05 - Gravity and Topography of the Terrestrial Planets, Treatise of Geophysics (Second Edition); Elsevier. doi:10.1016/B978-0-444-53802-4.00169-X')

Venus#

The parameters of the Venusian spheroid were obtained from [Wieczorek2015]:

print(boule.VENUS)
Sphere(name='VENUS', radius=6051878, geocentric_grav_const=324858592000000.0, angular_velocity=-2.9924e-07, long_name='Venus Spheroid', reference='Wieczorek, MA (2015). 10.05 - Gravity and Topography of the Terrestrial Planets, Treatise of Geophysics (Second Edition); Elsevier. doi:10.1016/B978-0-444-53802-4.00169-X')

Vesta#

The parameters of the Vesta triaxial ellipsoid were obtained from [Russell2012]:

print(boule.VESTA)
TriaxialEllipsoid(name='VESTA', semimajor_axis=286300, semimedium_axis=278600, semiminor_axis=223200, geocentric_grav_const=17290940000.0, angular_velocity=0.00032671050958367, long_name='Vesta Triaxial Ellipsoid', reference='Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., et al. (2012). Dawn at Vesta: Testing the Protoplanetary Paradigm. Science. doi:10.1126/science.1219381')