# Source code for verde.coordinates

"""
Functions for generating and manipulating coordinates.
"""
import numpy as np
from sklearn.utils import check_random_state

try:
from pykdtree.kdtree import KDTree
except ImportError:
from scipy.spatial import cKDTree as KDTree  # pylint: disable=no-name-in-module

from .utils import n_1d_arrays

def check_region(region):
"""
Check that the given region dimensions are valid.

For example, the west limit should not be greater than the east and there
must be exactly 4 values given.

Parameters
----------
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates.

Raises
------
ValueError
If the region doesn't have exactly 4 entries, W > E, or S > N.

"""
if len(region) != 4:
raise ValueError("Invalid region '{}'. Only 4 values allowed.".format(region))
w, e, s, n = region
if w > e:
raise ValueError(
"Invalid region '{}' (W, E, S, N). Must have W =< E.".format(region)
)
if s > n:
raise ValueError(
"Invalid region '{}' (W, E, S, N). Must have S =< N.".format(region)
)

[docs]def get_region(coordinates):
"""
Get the bounding region of the given coordinates.

Parameters
----------
coordinates : tuple of arrays
Arrays with the coordinates of each data point. Should be in the
following order: (easting, northing, vertical, ...). Only easting and
northing will be used, all subsequent coordinates will be ignored.

Returns
-------
region : tuple = (W, E, S, N)
The boundaries of a given region in Cartesian or geographic
coordinates.

Examples
--------

>>> coords = grid_coordinates((0, 1, -10, -6), shape=(10, 10))
>>> print(get_region(coords))
(0.0, 1.0, -10.0, -6.0)

"""
easting, northing = coordinates[:2]
region = (np.min(easting), np.max(easting), np.min(northing), np.max(northing))
return region

"""
Extend the borders of a region by the given amount.

Parameters
----------
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates.
The amount of padding to add to the region. If it's a single number,
add this to all boundaries of region equally. If it's a tuple of
East-West dimensions.

Returns
-------
padded_region : list = [W, E, S, N]

Examples
--------

>>> pad_region((0, 1, -5, -3), 1)
(-1, 2, -6, -2)
>>> pad_region((0, 1, -5, -3), (3, 2))
(-2, 3, -8, 0)

"""
w, e, s, n = region

[docs]def project_region(region, projection):
"""
Calculate the bounding box of a region in projected coordinates.

Parameters
----------
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates.
projection : callable or None
If not None, then should be a callable object (like a function)
projection(easting, northing) -> (proj_easting, proj_northing) that
takes in easting and northing coordinate arrays and returns projected
northing and easting coordinate arrays.

Returns
-------
proj_region : list = [W, E, S, N]
The bounding box of the projected region.

Examples
--------

>>> def projection(x, y):
...     return (2*x, -1*y)
>>> project_region((3, 5, -9, -4), projection)
(6.0, 10.0, 4.0, 9.0)

"""
east, north = grid_coordinates(region, shape=(101, 101))
east, north = projection(east.ravel(), north.ravel())
return (east.min(), east.max(), north.min(), north.max())

[docs]def scatter_points(region, size, random_state=None, extra_coords=None):
"""
Generate the coordinates for a random scatter of points.

The points are drawn from a uniform distribution.

Parameters
----------
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates.
size : int
The number of points to generate.
random_state : numpy.random.RandomState or an int seed
A random number generator used to define the state of the random
permutations. Use a fixed seed to make sure computations are
reproducible. Use None to choose a seed automatically (resulting in
different numbers with each run).
extra_coords : None, scalar, or list
If not None, then value(s) of extra coordinate arrays to be generated. These
extra arrays will have the same *size* as the others but will contain a
constant value. Will generate an extra array per value given in *extra_coords*.
Use this to generate arrays of constant heights or times, for example, that
might be needed to evaluate a gridder.

Returns
-------
coordinates : tuple of arrays
Arrays with coordinates of each point in the grid. Each array contains values
for a dimension in the order: easting, northing, vertical, and any extra
dimensions given in *extra_coords*. All arrays will have the specified *size*.

Examples
--------

>>> # We'll use a seed value will ensure that the same will be generated
>>> # every time.
>>> easting, northing = scatter_points((0, 10, -2, -1), 4, random_state=0)
>>> print(', '.join(['{:.4f}'.format(i) for i in easting]))
5.4881, 7.1519, 6.0276, 5.4488
>>> print(', '.join(['{:.4f}'.format(i) for i in northing]))
-1.5763, -1.3541, -1.5624, -1.1082
>>> easting, northing, height = scatter_points((0, 10, -2, -1), 4, random_state=0,
...                                            extra_coords=12)
>>> print(height)
[12. 12. 12. 12.]
>>> easting, northing, height, time = scatter_points(
...     (0, 10, -2, -1), 4, random_state=0, extra_coords=[12, 1986])
>>> print(height)
[12. 12. 12. 12.]
>>> print(time)
[1986. 1986. 1986. 1986.]

--------
grid_coordinates : Generate coordinates for each point on a regular grid
profile_coordinates : Coordinates for a profile between two points

"""
check_region(region)
random = check_random_state(random_state)
coordinates = []
for lower, upper in np.array(region).reshape((len(region) // 2, 2)):
coordinates.append(random.uniform(lower, upper, size))
if extra_coords is not None:
for value in np.atleast_1d(extra_coords):
coordinates.append(np.ones_like(coordinates) * value)
return tuple(coordinates)

[docs]def grid_coordinates(
region,
shape=None,
spacing=None,
pixel_register=False,
extra_coords=None,
):
"""
Generate the coordinates for each point on a regular grid.

The grid can be specified by either the number of points in each dimension (the
*shape*) or by the grid node spacing.

If the given region is not divisible by the desired spacing, either the region or
the spacing will have to be adjusted. By default, the spacing will be rounded to the
nearest multiple. Optionally, the East and North boundaries of the region can be
adjusted to fit the exact spacing given. See the examples below.

Parameters
----------
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic coordinates.
shape : tuple = (n_north, n_east) or None
The number of points in the South-North and West-East directions, respectively.
spacing : float, tuple = (s_north, s_east), or None
The grid spacing in the South-North and West-East directions, respectively. A
single value means that the spacing is equal in both directions.
Whether to adjust the spacing or the region if required. Ignored if *shape* is
pixel_register : bool
If True, the coordinates will refer to the center of each grid pixel instead of
the grid lines. In practice, this means that there will be one less element per
dimension of the grid when compared to grid line registered. Default is False.
extra_coords : None, scalar, or list
If not None, then value(s) of extra coordinate arrays to be generated. These
extra arrays will have the same *shape* as the others but will contain a
constant value. Will generate an extra array per value given in *extra_coords*.
Use this to generate arrays of constant heights or times, for example, that
might be needed to evaluate a gridder.

Returns
-------
coordinates : tuple of arrays
Arrays with coordinates of each point in the grid. Each array contains values
for a dimension in the order: easting, northing, vertical, and any extra
dimensions given in *extra_coords*. All arrays will have the specified *shape*.

Examples
--------

>>> east, north = grid_coordinates(region=(0, 5, 0, 10), shape=(5, 3))
>>> print(east.shape, north.shape)
(5, 3) (5, 3)
>>> # Lower printing precision to shorten this example
>>> import numpy as np; np.set_printoptions(precision=1, suppress=True)
>>> print(east)
[[0.  2.5 5. ]
[0.  2.5 5. ]
[0.  2.5 5. ]
[0.  2.5 5. ]
[0.  2.5 5. ]]
>>> print(north)
[[ 0.   0.   0. ]
[ 2.5  2.5  2.5]
[ 5.   5.   5. ]
[ 7.5  7.5  7.5]
[10.  10.  10. ]]
>>> # The grid can also be specified using the spacing between points
>>> # instead of the shape.
>>> east, north = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5)
>>> print(east.shape, north.shape)
(5, 3) (5, 3)
>>> print(east)
[[0.  2.5 5. ]
[0.  2.5 5. ]
[0.  2.5 5. ]
[0.  2.5 5. ]
[0.  2.5 5. ]]
>>> print(north)
[[ 0.   0.   0. ]
[ 2.5  2.5  2.5]
[ 5.   5.   5. ]
[ 7.5  7.5  7.5]
[10.  10.  10. ]]
>>> # Generate arrays for other coordinates that have a constant value.
>>> east, north, height = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5,
...                                        extra_coords=57)
>>> print(east.shape, north.shape, height.shape)
(5, 3) (5, 3) (5, 3)
>>> print(height)
[[57. 57. 57.]
[57. 57. 57.]
[57. 57. 57.]
[57. 57. 57.]
[57. 57. 57.]]
>>> east, north, height, time = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5,
...                                              extra_coords=[57, 0.1])
>>> print(east.shape, north.shape, height.shape, time.shape)
(5, 3) (5, 3) (5, 3) (5, 3)
>>> print(height)
[[57. 57. 57.]
[57. 57. 57.]
[57. 57. 57.]
[57. 57. 57.]
[57. 57. 57.]]
>>> print(time)
[[0.1 0.1 0.1]
[0.1 0.1 0.1]
[0.1 0.1 0.1]
[0.1 0.1 0.1]
[0.1 0.1 0.1]]
>>> # The spacing can be different for northing and easting, respectively
>>> east, north = grid_coordinates(region=(-5, 1, 0, 10), spacing=(2.5, 1))
>>> print(east.shape, north.shape)
(5, 7) (5, 7)
>>> print(east)
[[-5. -4. -3. -2. -1.  0.  1.]
[-5. -4. -3. -2. -1.  0.  1.]
[-5. -4. -3. -2. -1.  0.  1.]
[-5. -4. -3. -2. -1.  0.  1.]
[-5. -4. -3. -2. -1.  0.  1.]]
>>> print(north)
[[ 0.   0.   0.   0.   0.   0.   0. ]
[ 2.5  2.5  2.5  2.5  2.5  2.5  2.5]
[ 5.   5.   5.   5.   5.   5.   5. ]
[ 7.5  7.5  7.5  7.5  7.5  7.5  7.5]
[10.  10.  10.  10.  10.  10.  10. ]]
>>> # If the region can't be divided into the desired spacing, the spacing
>>> # will be adjusted to conform to the region
>>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.6)
>>> print(east.shape, north.shape)
(3, 3) (3, 3)
>>> print(east)
[[-5.  -2.5  0. ]
[-5.  -2.5  0. ]
[-5.  -2.5  0. ]]
>>> print(north)
[[0.  0.  0. ]
[2.5 2.5 2.5]
[5.  5.  5. ]]
>>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.4)
>>> print(east.shape, north.shape)
(3, 3) (3, 3)
>>> print(east)
[[-5.  -2.5  0. ]
[-5.  -2.5  0. ]
[-5.  -2.5  0. ]]
>>> print(north)
[[0.  0.  0. ]
[2.5 2.5 2.5]
[5.  5.  5. ]]
>>> # You can also choose to adjust the East and North boundaries of the
>>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.6,
>>> print(east.shape, north.shape)
(3, 3) (3, 3)
>>> print(east)
[[-5.  -2.4  0.2]
[-5.  -2.4  0.2]
[-5.  -2.4  0.2]]
>>> print(north)
[[0.  0.  0. ]
[2.6 2.6 2.6]
[5.2 5.2 5.2]]
>>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.4,
>>> print(east.shape, north.shape)
(3, 3) (3, 3)
>>> print(east)
[[-5.  -2.6 -0.2]
[-5.  -2.6 -0.2]
[-5.  -2.6 -0.2]]
>>> print(north)
[[0.  0.  0. ]
[2.4 2.4 2.4]
[4.8 4.8 4.8]]
>>> # We can optionally generate coordinates for the center of each grid
>>> # pixel instead of the corner (default)
>>> east, north = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5,
...                                pixel_register=True)
>>> # Lower printing precision to shorten this example
>>> import numpy as np; np.set_printoptions(precision=2, suppress=True)
>>> print(east.shape, north.shape)
(4, 2) (4, 2)
>>> print(east)
[[1.25 3.75]
[1.25 3.75]
[1.25 3.75]
[1.25 3.75]]
>>> print(north)
[[1.25 1.25]
[3.75 3.75]
[6.25 6.25]
[8.75 8.75]]

--------
scatter_points : Generate the coordinates for a random scatter of points
profile_coordinates : Coordinates for a profile between two points

"""
check_region(region)
if shape is not None and spacing is not None:
raise ValueError("Both grid shape and spacing provided. Only one is allowed.")
if shape is None and spacing is None:
raise ValueError("Either a grid shape or a spacing must be provided.")
if spacing is not None:
shape, region = spacing_to_shape(region, spacing, adjust)
east_lines = np.linspace(region, region, shape)
north_lines = np.linspace(region, region, shape)
if pixel_register:
east_lines = east_lines[:-1] + (east_lines - east_lines) / 2
north_lines = north_lines[:-1] + (north_lines - north_lines) / 2
coordinates = list(np.meshgrid(east_lines, north_lines))
if extra_coords is not None:
for value in np.atleast_1d(extra_coords):
coordinates.append(np.ones_like(coordinates) * value)
return tuple(coordinates)

"""
Convert the grid spacing to a grid shape.

Adjusts the spacing or the region if the desired spacing is not a multiple
of the grid dimensions.

Parameters
----------
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates.
spacing : float, tuple = (s_north, s_east), or None
The grid spacing in the South-North and West-East directions,
respectively. A single value means that the spacing is equal in both
directions.
Whether to adjust the spacing or the region if required. Ignored if
spacing.

Returns
-------
shape, region : tuples
The calculated shape and region that best fits the desired spacing.
Spacing or region may be adjusted.

"""
if adjust not in ["spacing", "region"]:
raise ValueError(
"Invalid value for *adjust* '{}'. Should be 'spacing' or 'region'".format(
)
)

spacing = np.atleast_1d(spacing)
if len(spacing) == 1:
deast = dnorth = spacing
elif len(spacing) == 2:
dnorth, deast = spacing
else:
raise ValueError(
"Only two values allowed for grid spacing: {}".format(str(spacing))
)

w, e, s, n = region
# Add 1 to get the number of nodes, not segments
nnorth = int(round((n - s) / dnorth)) + 1
neast = int(round((e - w) / deast)) + 1
# The shape is the same but we adjust the region so that the spacing
# isn't altered when we do the linspace.
n = s + (nnorth - 1) * dnorth
e = w + (neast - 1) * deast
return (nnorth, neast), (w, e, s, n)

[docs]def profile_coordinates(point1, point2, size, extra_coords=None):
"""
Coordinates for a profile along a straight line between two points.

Parameters
----------
point1 : tuple or list
(easting, northing) West-East and South-North coordinates of the
first point, respectively.
point2 : tuple or list
(easting, northing) West-East and South-North coordinates of the
second point, respectively.
size : int
Number of points to sample along the line.
extra_coords : None, scalar, or list
If not None, then value(s) of extra coordinate arrays to be generated. These
extra arrays will have the same *size* as the others but will contain a
constant value. Will generate an extra array per value given in *extra_coords*.
Use this to generate arrays of constant heights or times, for example, that
might be needed to evaluate a gridder.

Returns
-------
coordinates, distances : tuple and 1d array
The coordinates of points along the straight line and the distances from the
first point.

Examples
--------

>>> (east, north), dist = profile_coordinates((1, 10), (1, 20), size=11)
>>> print('easting:', ', '.join('{:.1f}'.format(i) for i in east))
easting: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
>>> print('northing:', ', '.join('{:.1f}'.format(i) for i in north))
northing: 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0
>>> print('distance:', ', '.join('{:.1f}'.format(i) for i in dist))
distance: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0
>>> (east, north, height), dist = profile_coordinates(
...     (1, 10), (1, 20), size=11, extra_coords=35)
>>> print(height)
[35. 35. 35. 35. 35. 35. 35. 35. 35. 35. 35.]
>>> (east, north, height, time), dist = profile_coordinates(
...     (1, 10), (1, 20), size=11, extra_coords=[35, 0.1])
>>> print(height)
[35. 35. 35. 35. 35. 35. 35. 35. 35. 35. 35.]
>>> print(time)
[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

--------
scatter_points : Generate the coordinates for a random scatter of points
grid_coordinates : Generate coordinates for each point on a regular grid

"""
if size <= 0:
raise ValueError("Invalid profile size '{}'. Must be > 0.".format(size))
diffs = [i - j for i, j in zip(point2, point1)]
separation = np.hypot(*diffs)
distances = np.linspace(0, separation, size)
angle = np.arctan2(*reversed(diffs))
coordinates = [
point1 + distances * np.cos(angle),
point1 + distances * np.sin(angle),
]
if extra_coords is not None:
for value in np.atleast_1d(extra_coords):
coordinates.append(np.ones_like(coordinates) * value)
return tuple(coordinates), distances

[docs]def inside(coordinates, region):
"""
Determine which points fall inside a given region.

Points at the boundary are counted as being outsize.

Parameters
----------
coordinates : tuple of arrays
Arrays with the coordinates of each data point. Should be in the
following order: (easting, northing, vertical, ...). Only easting and
northing will be used, all subsequent coordinates will be ignored.
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates.

Returns
-------
are_inside : array of booleans
An array of booleans with the same shape as the input coordinate
arrays. Will be True if the respective coordinates fall inside the
area, False otherwise.

Examples
--------

>>> import numpy as np
>>> east = np.array([1, 2, 3, 4, 5, 6])
>>> north = np.array([10, 11, 12, 13, 14, 15])
>>> region = [2.5, 5.5, 12, 15]
>>> print(inside((east, north), region))
[False False  True  True  True False]
>>> # This also works for 2D-arrays
>>> east = np.array([[1, 1, 1],
...                  [2, 2, 2],
...                  [3, 3, 3]])
>>> north = np.array([[5, 7, 9],
...                   [5, 7, 9],
...                   [5, 7, 9]])
>>> region = [0.5, 2.5, 6, 9]
>>> print(inside((east, north), region))
[[False  True  True]
[False  True  True]
[False False False]]

"""
check_region(region)
w, e, s, n = region
easting, northing = coordinates[:2]
# Allocate temporary arrays to minimize memory allocation overhead
out = np.empty_like(easting, dtype=np.bool)
tmp = tuple(np.empty_like(easting, dtype=np.bool) for i in range(4))
# Using the logical functions is a lot faster than & > < for some reason
# Plus, this way avoids repeated allocation of intermediate arrays
in_we = np.logical_and(
np.greater_equal(easting, w, out=tmp),
np.less_equal(easting, e, out=tmp),
out=tmp,
)
in_ns = np.logical_and(
np.greater_equal(northing, s, out=tmp),
np.less_equal(northing, n, out=tmp),
out=tmp,
)
are_inside = np.logical_and(in_we, in_ns, out=out)
return are_inside

"""
Split a region into blocks and label points according to where they fall.

The labels are integers corresponding to the index of the block. The same
index is used for the coordinates of each block.

.. note::

If installed, package pykdtree will be used instead of
:class:scipy.spatial.cKDTree for better performance.

Parameters
----------
coordinates : tuple of arrays
Arrays with the coordinates of each data point. Should be in the
following order: (easting, northing, vertical, ...). Only easting and
northing will be used, all subsequent coordinates will be ignored.
spacing : float, tuple = (s_north, s_east), or None
The block size in the South-North and West-East directions,
respectively. A single value means that the size is equal in both
directions.
Whether to adjust the spacing or the region if required. Ignored if
spacing.
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates. If not region is given, will use the bounding region of
the given points.

Returns
-------
block_coordinates : tuple of arrays
(easting, northing) arrays with the coordinates of the center of each
block.
labels : array
integer label for each data point. The label is the index of the block
to which that point belongs.

--------
BlockReduce : Apply a reduction operation to the data in blocks (windows).

Examples
--------

>>> from verde import grid_coordinates
>>> coords = grid_coordinates((-5, 0, 5, 10), spacing=1)
>>> block_coords, labels = block_split(coords, spacing=2.5)
>>> for coord in block_coords:
...     print(', '.join(['{:.2f}'.format(i) for i in coord]))
-3.75, -1.25, -3.75, -1.25
6.25, 6.25, 8.75, 8.75
>>> print(labels.reshape(coords.shape))
[[0 0 0 1 1 1]
[0 0 0 1 1 1]
[0 0 0 1 1 1]
[2 2 2 3 3 3]
[2 2 2 3 3 3]
[2 2 2 3 3 3]]

"""
if region is None:
region = get_region(coordinates)
block_coords = tuple(
i.ravel()
for i in grid_coordinates(