Source code for verde.coordinates

"""
Functions for generating and manipulating coordinates.
"""
import numpy as np
from sklearn.utils import check_random_state

try:
    from pykdtree.kdtree import KDTree
except ImportError:
    from scipy.spatial import cKDTree as KDTree  # pylint: disable=no-name-in-module

from .utils import n_1d_arrays


def check_region(region):
    """
    Check that the given region dimensions are valid.

    For example, the west limit should not be greater than the east and there
    must be exactly 4 values given.

    Parameters
    ----------
    region : list = [W, E, S, N]
        The boundaries of a given region in Cartesian or geographic
        coordinates.

    Raises
    ------
    ValueError
        If the region doesn't have exactly 4 entries, W > E, or S > N.

    """
    if len(region) != 4:
        raise ValueError("Invalid region '{}'. Only 4 values allowed.".format(region))
    w, e, s, n = region
    if w > e:
        raise ValueError(
            "Invalid region '{}' (W, E, S, N). Must have W =< E.".format(region)
        )
    if s > n:
        raise ValueError(
            "Invalid region '{}' (W, E, S, N). Must have S =< N.".format(region)
        )


[docs]def get_region(coordinates): """ Get the bounding region of the given coordinates. Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (easting, northing, vertical, ...). Only easting and northing will be used, all subsequent coordinates will be ignored. Returns ------- region : tuple = (W, E, S, N) The boundaries of a given region in Cartesian or geographic coordinates. Examples -------- >>> coords = grid_coordinates((0, 1, -10, -6), shape=(10, 10)) >>> print(get_region(coords)) (0.0, 1.0, -10.0, -6.0) """ easting, northing = coordinates[:2] region = (np.min(easting), np.max(easting), np.min(northing), np.max(northing)) return region
[docs]def pad_region(region, pad): """ Extend the borders of a region by the given amount. Parameters ---------- region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. pad : float or tuple = (pad_north, pad_east) The amount of padding to add to the region. If it's a single number, add this to all boundaries of region equally. If it's a tuple of numbers, then will add different padding to the North-South and East-West dimensions. Returns ------- padded_region : list = [W, E, S, N] The padded region. Examples -------- >>> pad_region((0, 1, -5, -3), 1) (-1, 2, -6, -2) >>> pad_region((0, 1, -5, -3), (3, 2)) (-2, 3, -8, 0) """ if np.isscalar(pad): pad = (pad, pad) w, e, s, n = region padded = (w - pad[1], e + pad[1], s - pad[0], n + pad[0]) return padded
[docs]def project_region(region, projection): """ Calculate the bounding box of a region in projected coordinates. Parameters ---------- region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. projection : callable or None If not None, then should be a callable object (like a function) ``projection(easting, northing) -> (proj_easting, proj_northing)`` that takes in easting and northing coordinate arrays and returns projected northing and easting coordinate arrays. Returns ------- proj_region : list = [W, E, S, N] The bounding box of the projected region. Examples -------- >>> def projection(x, y): ... return (2*x, -1*y) >>> project_region((3, 5, -9, -4), projection) (6.0, 10.0, 4.0, 9.0) """ east, north = grid_coordinates(region, shape=(101, 101)) east, north = projection(east.ravel(), north.ravel()) return (east.min(), east.max(), north.min(), north.max())
[docs]def scatter_points(region, size, random_state=None, extra_coords=None): """ Generate the coordinates for a random scatter of points. The points are drawn from a uniform distribution. Parameters ---------- region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. size : int The number of points to generate. random_state : numpy.random.RandomState or an int seed A random number generator used to define the state of the random permutations. Use a fixed seed to make sure computations are reproducible. Use ``None`` to choose a seed automatically (resulting in different numbers with each run). extra_coords : None, scalar, or list If not None, then value(s) of extra coordinate arrays to be generated. These extra arrays will have the same *size* as the others but will contain a constant value. Will generate an extra array per value given in *extra_coords*. Use this to generate arrays of constant heights or times, for example, that might be needed to evaluate a gridder. Returns ------- coordinates : tuple of arrays Arrays with coordinates of each point in the grid. Each array contains values for a dimension in the order: easting, northing, vertical, and any extra dimensions given in *extra_coords*. All arrays will have the specified *size*. Examples -------- >>> # We'll use a seed value will ensure that the same will be generated >>> # every time. >>> easting, northing = scatter_points((0, 10, -2, -1), 4, random_state=0) >>> print(', '.join(['{:.4f}'.format(i) for i in easting])) 5.4881, 7.1519, 6.0276, 5.4488 >>> print(', '.join(['{:.4f}'.format(i) for i in northing])) -1.5763, -1.3541, -1.5624, -1.1082 >>> easting, northing, height = scatter_points((0, 10, -2, -1), 4, random_state=0, ... extra_coords=12) >>> print(height) [12. 12. 12. 12.] >>> easting, northing, height, time = scatter_points( ... (0, 10, -2, -1), 4, random_state=0, extra_coords=[12, 1986]) >>> print(height) [12. 12. 12. 12.] >>> print(time) [1986. 1986. 1986. 1986.] See also -------- grid_coordinates : Generate coordinates for each point on a regular grid profile_coordinates : Coordinates for a profile between two points """ check_region(region) random = check_random_state(random_state) coordinates = [] for lower, upper in np.array(region).reshape((len(region) // 2, 2)): coordinates.append(random.uniform(lower, upper, size)) if extra_coords is not None: for value in np.atleast_1d(extra_coords): coordinates.append(np.ones_like(coordinates[0]) * value) return tuple(coordinates)
[docs]def grid_coordinates( region, shape=None, spacing=None, adjust="spacing", pixel_register=False, extra_coords=None, ): """ Generate the coordinates for each point on a regular grid. The grid can be specified by either the number of points in each dimension (the *shape*) or by the grid node spacing. If the given region is not divisible by the desired spacing, either the region or the spacing will have to be adjusted. By default, the spacing will be rounded to the nearest multiple. Optionally, the East and North boundaries of the region can be adjusted to fit the exact spacing given. See the examples below. Parameters ---------- region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. shape : tuple = (n_north, n_east) or None The number of points in the South-North and West-East directions, respectively. spacing : float, tuple = (s_north, s_east), or None The grid spacing in the South-North and West-East directions, respectively. A single value means that the spacing is equal in both directions. adjust : {'spacing', 'region'} Whether to adjust the spacing or the region if required. Ignored if *shape* is given instead of *spacing*. Defaults to adjusting the spacing. pixel_register : bool If True, the coordinates will refer to the center of each grid pixel instead of the grid lines. In practice, this means that there will be one less element per dimension of the grid when compared to grid line registered. Default is False. extra_coords : None, scalar, or list If not None, then value(s) of extra coordinate arrays to be generated. These extra arrays will have the same *shape* as the others but will contain a constant value. Will generate an extra array per value given in *extra_coords*. Use this to generate arrays of constant heights or times, for example, that might be needed to evaluate a gridder. Returns ------- coordinates : tuple of arrays Arrays with coordinates of each point in the grid. Each array contains values for a dimension in the order: easting, northing, vertical, and any extra dimensions given in *extra_coords*. All arrays will have the specified *shape*. Examples -------- >>> east, north = grid_coordinates(region=(0, 5, 0, 10), shape=(5, 3)) >>> print(east.shape, north.shape) (5, 3) (5, 3) >>> # Lower printing precision to shorten this example >>> import numpy as np; np.set_printoptions(precision=1, suppress=True) >>> print(east) [[0. 2.5 5. ] [0. 2.5 5. ] [0. 2.5 5. ] [0. 2.5 5. ] [0. 2.5 5. ]] >>> print(north) [[ 0. 0. 0. ] [ 2.5 2.5 2.5] [ 5. 5. 5. ] [ 7.5 7.5 7.5] [10. 10. 10. ]] >>> # The grid can also be specified using the spacing between points >>> # instead of the shape. >>> east, north = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5) >>> print(east.shape, north.shape) (5, 3) (5, 3) >>> print(east) [[0. 2.5 5. ] [0. 2.5 5. ] [0. 2.5 5. ] [0. 2.5 5. ] [0. 2.5 5. ]] >>> print(north) [[ 0. 0. 0. ] [ 2.5 2.5 2.5] [ 5. 5. 5. ] [ 7.5 7.5 7.5] [10. 10. 10. ]] >>> # Generate arrays for other coordinates that have a constant value. >>> east, north, height = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5, ... extra_coords=57) >>> print(east.shape, north.shape, height.shape) (5, 3) (5, 3) (5, 3) >>> print(height) [[57. 57. 57.] [57. 57. 57.] [57. 57. 57.] [57. 57. 57.] [57. 57. 57.]] >>> east, north, height, time = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5, ... extra_coords=[57, 0.1]) >>> print(east.shape, north.shape, height.shape, time.shape) (5, 3) (5, 3) (5, 3) (5, 3) >>> print(height) [[57. 57. 57.] [57. 57. 57.] [57. 57. 57.] [57. 57. 57.] [57. 57. 57.]] >>> print(time) [[0.1 0.1 0.1] [0.1 0.1 0.1] [0.1 0.1 0.1] [0.1 0.1 0.1] [0.1 0.1 0.1]] >>> # The spacing can be different for northing and easting, respectively >>> east, north = grid_coordinates(region=(-5, 1, 0, 10), spacing=(2.5, 1)) >>> print(east.shape, north.shape) (5, 7) (5, 7) >>> print(east) [[-5. -4. -3. -2. -1. 0. 1.] [-5. -4. -3. -2. -1. 0. 1.] [-5. -4. -3. -2. -1. 0. 1.] [-5. -4. -3. -2. -1. 0. 1.] [-5. -4. -3. -2. -1. 0. 1.]] >>> print(north) [[ 0. 0. 0. 0. 0. 0. 0. ] [ 2.5 2.5 2.5 2.5 2.5 2.5 2.5] [ 5. 5. 5. 5. 5. 5. 5. ] [ 7.5 7.5 7.5 7.5 7.5 7.5 7.5] [10. 10. 10. 10. 10. 10. 10. ]] >>> # If the region can't be divided into the desired spacing, the spacing >>> # will be adjusted to conform to the region >>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.6) >>> print(east.shape, north.shape) (3, 3) (3, 3) >>> print(east) [[-5. -2.5 0. ] [-5. -2.5 0. ] [-5. -2.5 0. ]] >>> print(north) [[0. 0. 0. ] [2.5 2.5 2.5] [5. 5. 5. ]] >>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.4) >>> print(east.shape, north.shape) (3, 3) (3, 3) >>> print(east) [[-5. -2.5 0. ] [-5. -2.5 0. ] [-5. -2.5 0. ]] >>> print(north) [[0. 0. 0. ] [2.5 2.5 2.5] [5. 5. 5. ]] >>> # You can also choose to adjust the East and North boundaries of the >>> # region instead. >>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.6, ... adjust='region') >>> print(east.shape, north.shape) (3, 3) (3, 3) >>> print(east) [[-5. -2.4 0.2] [-5. -2.4 0.2] [-5. -2.4 0.2]] >>> print(north) [[0. 0. 0. ] [2.6 2.6 2.6] [5.2 5.2 5.2]] >>> east, north = grid_coordinates(region=(-5, 0, 0, 5), spacing=2.4, ... adjust='region') >>> print(east.shape, north.shape) (3, 3) (3, 3) >>> print(east) [[-5. -2.6 -0.2] [-5. -2.6 -0.2] [-5. -2.6 -0.2]] >>> print(north) [[0. 0. 0. ] [2.4 2.4 2.4] [4.8 4.8 4.8]] >>> # We can optionally generate coordinates for the center of each grid >>> # pixel instead of the corner (default) >>> east, north = grid_coordinates(region=(0, 5, 0, 10), spacing=2.5, ... pixel_register=True) >>> # Lower printing precision to shorten this example >>> import numpy as np; np.set_printoptions(precision=2, suppress=True) >>> print(east.shape, north.shape) (4, 2) (4, 2) >>> print(east) [[1.25 3.75] [1.25 3.75] [1.25 3.75] [1.25 3.75]] >>> print(north) [[1.25 1.25] [3.75 3.75] [6.25 6.25] [8.75 8.75]] See also -------- scatter_points : Generate the coordinates for a random scatter of points profile_coordinates : Coordinates for a profile between two points """ check_region(region) if shape is not None and spacing is not None: raise ValueError("Both grid shape and spacing provided. Only one is allowed.") if shape is None and spacing is None: raise ValueError("Either a grid shape or a spacing must be provided.") if spacing is not None: shape, region = spacing_to_shape(region, spacing, adjust) east_lines = np.linspace(region[0], region[1], shape[1]) north_lines = np.linspace(region[2], region[3], shape[0]) if pixel_register: east_lines = east_lines[:-1] + (east_lines[1] - east_lines[0]) / 2 north_lines = north_lines[:-1] + (north_lines[1] - north_lines[0]) / 2 coordinates = list(np.meshgrid(east_lines, north_lines)) if extra_coords is not None: for value in np.atleast_1d(extra_coords): coordinates.append(np.ones_like(coordinates[0]) * value) return tuple(coordinates)
def spacing_to_shape(region, spacing, adjust): """ Convert the grid spacing to a grid shape. Adjusts the spacing or the region if the desired spacing is not a multiple of the grid dimensions. Parameters ---------- region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. spacing : float, tuple = (s_north, s_east), or None The grid spacing in the South-North and West-East directions, respectively. A single value means that the spacing is equal in both directions. adjust : {'spacing', 'region'} Whether to adjust the spacing or the region if required. Ignored if *shape* is given instead of *spacing*. Defaults to adjusting the spacing. Returns ------- shape, region : tuples The calculated shape and region that best fits the desired spacing. Spacing or region may be adjusted. """ if adjust not in ["spacing", "region"]: raise ValueError( "Invalid value for *adjust* '{}'. Should be 'spacing' or 'region'".format( adjust ) ) spacing = np.atleast_1d(spacing) if len(spacing) == 1: deast = dnorth = spacing[0] elif len(spacing) == 2: dnorth, deast = spacing else: raise ValueError( "Only two values allowed for grid spacing: {}".format(str(spacing)) ) w, e, s, n = region # Add 1 to get the number of nodes, not segments nnorth = int(round((n - s) / dnorth)) + 1 neast = int(round((e - w) / deast)) + 1 if adjust == "region": # The shape is the same but we adjust the region so that the spacing # isn't altered when we do the linspace. n = s + (nnorth - 1) * dnorth e = w + (neast - 1) * deast return (nnorth, neast), (w, e, s, n)
[docs]def profile_coordinates(point1, point2, size, extra_coords=None): """ Coordinates for a profile along a straight line between two points. Parameters ---------- point1 : tuple or list ``(easting, northing)`` West-East and South-North coordinates of the first point, respectively. point2 : tuple or list ``(easting, northing)`` West-East and South-North coordinates of the second point, respectively. size : int Number of points to sample along the line. extra_coords : None, scalar, or list If not None, then value(s) of extra coordinate arrays to be generated. These extra arrays will have the same *size* as the others but will contain a constant value. Will generate an extra array per value given in *extra_coords*. Use this to generate arrays of constant heights or times, for example, that might be needed to evaluate a gridder. Returns ------- coordinates, distances : tuple and 1d array The coordinates of points along the straight line and the distances from the first point. Examples -------- >>> (east, north), dist = profile_coordinates((1, 10), (1, 20), size=11) >>> print('easting:', ', '.join('{:.1f}'.format(i) for i in east)) easting: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 >>> print('northing:', ', '.join('{:.1f}'.format(i) for i in north)) northing: 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0 >>> print('distance:', ', '.join('{:.1f}'.format(i) for i in dist)) distance: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 >>> (east, north, height), dist = profile_coordinates( ... (1, 10), (1, 20), size=11, extra_coords=35) >>> print(height) [35. 35. 35. 35. 35. 35. 35. 35. 35. 35. 35.] >>> (east, north, height, time), dist = profile_coordinates( ... (1, 10), (1, 20), size=11, extra_coords=[35, 0.1]) >>> print(height) [35. 35. 35. 35. 35. 35. 35. 35. 35. 35. 35.] >>> print(time) [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1] See also -------- scatter_points : Generate the coordinates for a random scatter of points grid_coordinates : Generate coordinates for each point on a regular grid """ if size <= 0: raise ValueError("Invalid profile size '{}'. Must be > 0.".format(size)) diffs = [i - j for i, j in zip(point2, point1)] separation = np.hypot(*diffs) distances = np.linspace(0, separation, size) angle = np.arctan2(*reversed(diffs)) coordinates = [ point1[0] + distances * np.cos(angle), point1[1] + distances * np.sin(angle), ] if extra_coords is not None: for value in np.atleast_1d(extra_coords): coordinates.append(np.ones_like(coordinates[0]) * value) return tuple(coordinates), distances
[docs]def inside(coordinates, region): """ Determine which points fall inside a given region. Points at the boundary are counted as being outsize. Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (easting, northing, vertical, ...). Only easting and northing will be used, all subsequent coordinates will be ignored. region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. Returns ------- are_inside : array of booleans An array of booleans with the same shape as the input coordinate arrays. Will be ``True`` if the respective coordinates fall inside the area, ``False`` otherwise. Examples -------- >>> import numpy as np >>> east = np.array([1, 2, 3, 4, 5, 6]) >>> north = np.array([10, 11, 12, 13, 14, 15]) >>> region = [2.5, 5.5, 12, 15] >>> print(inside((east, north), region)) [False False True True True False] >>> # This also works for 2D-arrays >>> east = np.array([[1, 1, 1], ... [2, 2, 2], ... [3, 3, 3]]) >>> north = np.array([[5, 7, 9], ... [5, 7, 9], ... [5, 7, 9]]) >>> region = [0.5, 2.5, 6, 9] >>> print(inside((east, north), region)) [[False True True] [False True True] [False False False]] """ check_region(region) w, e, s, n = region easting, northing = coordinates[:2] # Allocate temporary arrays to minimize memory allocation overhead out = np.empty_like(easting, dtype=np.bool) tmp = tuple(np.empty_like(easting, dtype=np.bool) for i in range(4)) # Using the logical functions is a lot faster than & > < for some reason # Plus, this way avoids repeated allocation of intermediate arrays in_we = np.logical_and( np.greater_equal(easting, w, out=tmp[0]), np.less_equal(easting, e, out=tmp[1]), out=tmp[2], ) in_ns = np.logical_and( np.greater_equal(northing, s, out=tmp[0]), np.less_equal(northing, n, out=tmp[1]), out=tmp[3], ) are_inside = np.logical_and(in_we, in_ns, out=out) return are_inside
[docs]def block_split(coordinates, spacing, adjust="spacing", region=None): """ Split a region into blocks and label points according to where they fall. The labels are integers corresponding to the index of the block. The same index is used for the coordinates of each block. .. note:: If installed, package ``pykdtree`` will be used instead of :class:`scipy.spatial.cKDTree` for better performance. Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (easting, northing, vertical, ...). Only easting and northing will be used, all subsequent coordinates will be ignored. spacing : float, tuple = (s_north, s_east), or None The block size in the South-North and West-East directions, respectively. A single value means that the size is equal in both directions. adjust : {'spacing', 'region'} Whether to adjust the spacing or the region if required. Ignored if *shape* is given instead of *spacing*. Defaults to adjusting the spacing. region : list = [W, E, S, N] The boundaries of a given region in Cartesian or geographic coordinates. If not region is given, will use the bounding region of the given points. Returns ------- block_coordinates : tuple of arrays (easting, northing) arrays with the coordinates of the center of each block. labels : array integer label for each data point. The label is the index of the block to which that point belongs. See also -------- BlockReduce : Apply a reduction operation to the data in blocks (windows). Examples -------- >>> from verde import grid_coordinates >>> coords = grid_coordinates((-5, 0, 5, 10), spacing=1) >>> block_coords, labels = block_split(coords, spacing=2.5) >>> for coord in block_coords: ... print(', '.join(['{:.2f}'.format(i) for i in coord])) -3.75, -1.25, -3.75, -1.25 6.25, 6.25, 8.75, 8.75 >>> print(labels.reshape(coords[0].shape)) [[0 0 0 1 1 1] [0 0 0 1 1 1] [0 0 0 1 1 1] [2 2 2 3 3 3] [2 2 2 3 3 3] [2 2 2 3 3 3]] """ if region is None: region = get_region(coordinates) block_coords = tuple( i.ravel() for i in grid_coordinates( region, spacing=spacing, adjust=adjust, pixel_register=True ) ) tree = KDTree(np.transpose(block_coords)) labels = tree.query(np.transpose(n_1d_arrays(coordinates, 2)))[1] return block_coords, labels