Earth GravityΒΆ

This is the magnitude of the gravity vector of the Earth (gravitational + centrifugal) at 10 km height. The data is on a regular grid with 0.5 degree spacing at 10km ellipsoidal height. It was generated from the spherical harmonic model EIGEN-6C4 [Forste_etal2014].

../_images/sphx_glr_earth_gravity_001.png

Out:

<xarray.Dataset>
Dimensions:          (latitude: 361, longitude: 721)
Coordinates:
  * longitude        (longitude) float64 -180.0 -179.5 -179.0 ... 179.5 180.0
  * latitude         (latitude) float64 -90.0 -89.5 -89.0 ... 89.0 89.5 90.0
Data variables:
    gravity          (latitude, longitude) float64 9.801e+05 ... 9.802e+05
    height_over_ell  (latitude, longitude) float64 1e+04 1e+04 ... 1e+04 1e+04

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import harmonica as hm

# Load the gravity grid
data = hm.datasets.fetch_gravity_earth()
print(data)

# Make a plot of data using Cartopy
plt.figure(figsize=(10, 10))
ax = plt.axes(projection=ccrs.Orthographic(central_longitude=150))
pc = data.gravity.plot.pcolormesh(
    ax=ax, transform=ccrs.PlateCarree(), add_colorbar=False
)
plt.colorbar(
    pc, label="mGal", orientation="horizontal", aspect=50, pad=0.01, shrink=0.6
)
ax.set_title("Gravity of the Earth (EIGEN-6C4)")
ax.coastlines()
plt.tight_layout()
plt.show()

Total running time of the script: ( 0 minutes 0.428 seconds)

Gallery generated by Sphinx-Gallery